Data treatment

Pål Rustad NORIP workshop Reykjavik, 10/8-2002

Controls

5 control samples:

- CAL: Serum pool, target values for most components established by reference methods
- X: Serum pool from men
- P: Serum pool from women using contraceptive pills
- HIGH: Serum pool concentrated by freezing
- LOW: HIGH diluted 1:2 with calcium/sodium-solution

Person samples measured together with control samples is defined as one series.

- At least one series should consist of:
 - 10 CAL
 - 3 each of X, P, HIGH, LOW
- other series by:
 - **10** X

Selection/calculation of reference values

Calculation except enzymes

 For all components (except enzymes) CAL is the reference standard (calibrator), i.e. all results (with CAL in series) are multiplied by the factor:

CAL_{target}/CAL_{mean of this series}

- Factor for series with only X:
 - $X_{target}/X_{mean of this series}$
 - where

 $X_{target} = CAL_{target} * median(X_{mean}/CA L_{mean})$

Results: <u>Creat</u>, etc

Calculation enzymes

- R result from lab
- r result from instrument
- S, I slope, intercept used by lab as correction parameters according to formula:
 - $R = S \bullet r + I \text{ or } r = (R-I)/S$

r is converted to common unit (U/L)

Error handling

- Laboratory asked to check registered data by printing report from registration program before submitting data!
- Report
- Person analytical data comparison of different materials for same person and component
- Control data

Exclusion of data

- According table with person analytical data, these are the concepts of exclusion:
 - Person (Peter Feldings)
 - Enzymes (Heidi Steenslands)
 - Controls
 - Material (comparison of results from fresh and thawed serum and plasma for same person)
 - Gross errors (missing decimal point, etc)
 - Duplicate

Exclusion of data Controls

- Quality goals for precision NOT evaluated
- Quality goals for systematic error (bias):
 - optimum: $B < 1/8 \cdot s_B + k \cdot s_A$
 - desirable: $B < 1/4 \cdot s_B + k \cdot s_A$
 - minimum: $B < 3/8 \cdot s_B + k \cdot s_A$ where
 - s_B interindividual biological variation
 - s_A analytical variation
 - k factor dependent on number of measurements and confidence level

Exclusion of data Controls

Quotients tested for bias: X/CAL, P/CAL, HIGH/LOW

Quality goals

expressed with reference limits (H, L) and log transformed distributions according to

 $CV_B = [ln(H) - ln(L)]/4$

and measurement uncertainty for the quotients, gives the following quality criteria:

Optimum

 $B < 1/32 \cdot (InH-InL) + 2 \cdot (1/i + 1/j)^{1/2} \cdot CV_{CAL}$

Desirable

 $B < 2/32 \cdot (InH-InL) + 2 \cdot (1/i + 1/j)^{1/2} \cdot CV_{CAL}$

Minimum

 $B < 3/32 \cdot (InH-InL) + 2 \cdot (1/i + 1/j)^{1/2} \cdot CV_{CAL}$

Exclusion of data Controls

Result

- No of exclusions
- Effect on <u>calculated reference</u> <u>limit</u>
- Conclusion
 - Exclusion only used for sodium

Exclusion of data Same person, different materials

- Absolute difference > 1.5
 CVb and at least one outside reference limit
- No excluded: 1053 (0.8%)

Exclusion of data Gross errors

- Many such errors corrected by report
- Rest (2-3) deleted

Exclusion of data Summary

- No of results: 126213
- No of results excluded
 - Person 1159 0.9%
 Enzymes 15939 12.6%
 Controls 2367 1.9%
 - Material 1053
 - Gross errors 2

- 1.9% 0.8% 0.0%
- Duplicate 1710 1.4%

Not excluded: 104959

What have we NOT done?

- Frozen plasma
- Multivariate ref.intervals
- Influence of
 - all person parameters
 - sample tubes
 - geography